
Prof. David Draper
University of California, Santa Cruz
Department of Statistics
Baskin School of Engineering

STAT 206 (Applied Bayesian Statistics)

Take-Home Test 3: Final Version

Absolute due date: uploaded to canvas.ucsc.edu by 11.59pm on 22 Mar 2020

Problem 2(B) on this test is required for the graduate students in the class but extra-credit
for the undergraduates.

Here are the ground rules: this test is open-book and open-notes, and consists of two problems (true/false
and calculation); each of the 7 true/false questions is worth 10 points, and the calculation
problem is worth xxx total points, for a total of xxx points, plus the possibility of up to xx
extra-credit points.

The right answer with no reasoning to support it, or incorrect reasoning, will get half credit, so try to
make a serious effort on each part of each problem (this will ensure you at least half credit). In an AMS
graduate class I taught in 2012, on a take-home test like this one there were 15 true/false questions,
worth a total of 150 points; one student got a score of 92 out of 150 (61%, a D−, in a graduate class
where B− is the lowest passing grade) on that part of the test, for repeatedly answering just “true” or
“false” with no explanation. Don’t let that happen to you.

On non-extra-credit problems, I mentally start everybody out at −0 (i.e., with a perfect score), and
then you accumulate negative points for incorrect answers and/or reasoning, or parts of problems left
blank. On extra-credit problems, the usual outcome is that you go forward (in the sense that your overall
score goes up) or you at least stay level, but please note that it’s also possible to go backwards on such
problems (e.g., if you accumulate +3 for part of an extra-credit problem but −4 for the rest of it, for
saying or doing something egregiously wrong).

This test is to be entirely your own efforts; do not collaborate with anyone or get help from anyone but
me or our TAs (Peter Trubey and Xingchen (Joe) Yu). The intent is that the course lecture notes and
readings should be sufficient to provide you with all the guidance you need to solve the problems posed
below, but you may use other written materials (e.g., the web, journal articles, and books other than
those already mentioned in the readings), provided that you cite your sources thoroughly and
accurately; you will lose (substantial) credit for, e.g., lifting blocks of text directly from wikipedia and
inserting them into your solutions without full attribution.

If it’s clear that (for example) two people have worked together on a part of a problem that’s worth 20
points, and each answer would have earned 16 points if it had not arisen from a collaboration, then each
person will receive 8 of the 16 points collectively earned (for a total score of 8 out of 20), and I reserve
the right to impose additional penalties at my discretion. If you solve a problem on your own and then
share your solution with anyone else (because people from your cultural background routinely do this, or
out of pity, or kindness, or whatever motive you may believe you have; it doesn’t matter), you’re just as
guilty of illegal collaboration as the person who took your solution from you, and both of you will receive
the same penalty. This sort of thing is necessary on behalf of the many people who do not cheat, to
ensure that their scores are meaningfully earned. In the AMS graduate class in 2012 mentioned above,
five people failed the class because of illegal collaboration; don’t let that happen to you.

1



In class I’ve demonstrated numerical work in R; you can (of course) make the calculations and plots
requested in the problems below in any environment you prefer (e.g., Matlab, Python, ...).

Please collect {all of the code you used in answering the questions below} into an Appendix
at the end of your document, so that (if you do something wrong) the grader can better
give you part credit. To avoid plagiarism, if you end up using any of the code I post on the course
web page or generate during office hours, at the beginning of your Appendix you can say something like
the following:

I used some of Professor Draper’s R code in this assignment, adapting it as needed.

1 True/False

[70 total points: 10 points each] For each statement below, say whether it’s true or false; if true without
further assumptions, briefly explain why it’s true (and — extra credit — what its implications are for
statistical inference); if it’s sometimes true, give the extra conditions necessary to make it true; if it’s
false, briefly explain how to change it so that it’s true and/or give an example of why it’s false. If
the statement consists of two or more sub-statements and two or more of them are false, you need to
explicitly address all of the false sub-statements in your answer.

In answering these questions you may find it helpful to consult the following references, available on
the course web page: DS (Degroot and Schervish (2012)) sections 3.10, 12.5, 12.6; Gelman et al. (2014)
Chapter 11.

(A) If You can figure out how to do IID sampling from the posterior distribution of interest to You,
this will often be more Monte-Carlo efficient than MCMC sampling from the same posterior.

(B) A (first-order) Markov chain is a particularly simple stochastic process: to simulate where the chain
goes next, You only need to know (i) where it is now and (ii) where it was one iteration ago.

(C) The bootstrap is a frequentist simulation-based computational method (with ties to Bayesian non-
parametrics) that can be used to create approximate confidence intervals for population summaries
even when the population distribution of the outcome variable y of interest is not known; for exam-
ple, if all You know from problem context is that Your observations y = (y1, . . . , yn) are IID from
some distribution with finite mean µ and finite SD σ, You can use the bootstrap to build an ap-
proximate confidence interval for µ even though You don’t know what the population distribution
is.

(D) In MCMC sampling from a posterior distribution, You have to be really careful to use a monitoring
period of just the right length, because if the monitoring goes on for too long the Markov chain
may drift out of equilibrium.

(E) Simulation-based computational methods are needed in Bayesian data science (inference, prediction
and decision-making) because conjugate priors don’t always exist and high-dimensional probability
distributions are difficult to summarize algebraically.

(F) In MCMC sampling from a posterior distribution, You have to be really careful to use a burn-in
period of just the right length, because if the burn-in goes on for too long the Markov chain will
have missed its chance to find the equilibrium distribution.

2



(G) You’re MCMC sampling from a posterior distribution for a vector θ = (θ1, . . . , θk). During the
monitoring period, the column in the MCMC data set for a component of θ (θj, say) behaves like an
autoregressive time series of order 1 (AR1) with estimated first-order autocorrelation ρ̂j = 0.992.
As usual, You’ll use the sample mean θ̄∗j of the monitored draws θ∗ij as Your Monte Carlo estimate
of the posterior mean of θj. To achieve the same estimated Monte Carlo standard error for θ̄∗j that
You would have been able to attain if You could have done IID sampling, Your MCMC monitoring
sample size would have to be about 250 times bigger than the length of the IID monitoring run.

2 Calculation

Parts (A) and (B) of this problem are similar to problem 2(B) in Take-Home Test 2, in that they look
really long but don’t actually have that much for You to do: just read the problems carefully, run my
code (sometimes You’ll need to modify it a bit), and figure how to interpret the output.

(A) [115 total points for this problem, plus up to 20 extra credit points] As I’m sure You know, if You
encounter a wild mushroom in a forest there’s no guarantee that it’s edible; every year several
people die in the U.S. from wild mushroom poisoning. Two questions come to mind, in this age of
cell phone apps: (1) Can the edible/poisonous status of a wild mushroom be accurately predicted
from characteristics such as its appearance and odor? and (2) If You were building an app to give
people advice about whether a wild mushroom they’ve found is edible, (to make the app easy to
use) what’s the minimum number of variables necessary to get highly accurate predictions?

The U.C. Irvine Machine Learning Repository has a data set – a copy of which is now on the STAT
206 web page, along with a text file containing important contextual information – consisting of
n = 8,124

hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus
and Lepiota Family. Each species is identified as definitely edible, definitely poisonous,
or of unknown edibility and not recommended. This latter class was combined with the
poisonous one. The Audubon Society Field Guide to North American Mushrooms (1981)
clearly states that there is no simple rule for determining the edibility of a mushroom;
no rule like “leaflets three, let it be” for Poisonous Oak and Ivy.

As You’ll see when You begin looking at the data set, there are k = 22 predictor variables
(x1, . . . , xk) available, ranging from aspects of the mushroom’s cap to its habitat, and the out-
come variable y is coded 1 for poisonous and 0 for edible. The goals of this problem, corresponding
to the two questions above, are (1) to build linear regression models, using these predictors, to
produce estimated probabilities p̂ that (y = 1) as a function of a given mushroom’s characteristics,
(2) to identify the smallest subset of the xj (for inclusion in the app) that still produces highly
accurate p̂ values, and (3) to decide whether the predictive system is accurate enough to release
the app to the general public without poisoning a lot of people in the process.

We’re going to do a maximum-likelihood analysis of this data set, because (I’m assuming that) you
and I know so little about ‘gilled mushrooms in the Agaricus and Lepiota Family’ that a Bayesian
analysis here would just reproduce the likelihood story. I’m also doing something a bit unusual in
having you fit linear regression models to a binary outcome variable, but the more usual choice of
logistic regression models (like those in problem 2(B)) would give essentially the same results.

3



When You examine the set of predictor variables, You’ll see that they’re all categorical (R calls such
variables factors), taking on a number of possible values (levels) ranging from 1 to 12. Important:
all of the levels of all of the predictors in the data set have been abbreviated to a single
letter in the standard English alphabet; the context file contains a dictionary that
translates those abbreviations to their actual meanings. Obviously any predictor variable
that takes on only 1 possible value is useless for predicting anything; there is such a variable, so
early on in the analysis we’ll drop it (veil.type) and reset k to 21. One variable – stalk.root

– has a lot of missing values (2,480 out of 8,124), but one nice thing about categorical predictors
is that missingness can be treated as just another level of the factor, so that no cases are lost by
having to omit rows in the data set with missing values in them (an undesirable action that’s not
needed with factor predictors).

As discussed in class, the basic frequentist linear regression model is of the form (for i = 1, . . . , n)

yi = β0 +
k∑

j=1

xij βj + ei , (1)

in which the (ei |σN B) are IID N(0, σ2); here N denotes the Normality assumption, which is not
part of problem context. In class we also saw that this model can be written in matrix form as

y = X β + e , (2)

where y is the (n×1) vector whose transpose is (y1, . . . , yn), X is the [n×(k+1)] matrix whose first
column is a vector of 1s (to account for the intercept term β0) and whose ith row is (1, xi1, . . . , xik),
β is the [(k + 1) × 1] vector whose transpose is (β0, β1, . . . , βk) and e is the (n × 1) vector whose
transpose is (e1, . . . , en).

In applying this model to the mushroom data, a new question immediately arises: how can You
bring a categorical predictor – such as ring.number, with the 3 levels “n” (none), “o” (one) and
“t” (two) – into a regression model? The answer is with a set of indicator, also known as dummy,
variables: with x16 = ring.number as an example, having ` = 3 levels, You create a new variable
z1 that’s 1 if x16 = “n” and 0 otherwise, and another new variable z2 that’s 1 if x16 = “o” and 0
otherwise, and a third new variable z3 that’s 1 if x16 = “t” and 0 otherwise.

If You now include all ` = 3 of the zj in the set of predictors, in place of x16, You will have created
what’s called a collinearity problem: by the nature of how the zj were defined, for every mushroom
i in the data set it’s a fact that zi1 + zi2 + zi3 = 1. This makes the X matrix in equation (2)
non-invertible, meaning that the computation of the maximum-likelihood estimate of β, namely
β̂ = (XTX)−1XT y, would be more difficult to carry out. The (simple) solution is to omit one of
the z variables in the set of zj You include in the modeling: after all, in the ring.number example,
if You knew zi1 and zi2, zi3 = (1 − zi1 − zi2) would be redundant (in the jargon of regression
modeling, the category whose z dummy has been left out is called the omitted group). Letting
`j be the number of levels of categorical predictor xj and setting L =

∑k
j=1 `j, the new linear

regression model, expressed in terms of the dummy variables z, is

yi = β0 + [β1 zi1 + · · ·+ β`1−1 zi,`1−1] + [β`1 zi2 + · · ·+ β`1+`2−2 zi,`1+`2−2] (3)

+ · · ·+
[
βL−K−(`k−2) zi,L−K−(`k−2) + · · ·+ βL−k zi,L−k

]
+ ei .

This looks nasty but isn’t: original categorical variable (factor) x1 is replaced by (`1 − 1) dummy
variables, original factor x2 is replaced by (`2−1) dummies, and so on up to original factor xk being
replaced by (`k − 1) dummies, for a total of k∗ = (L− k) dummy variables replacing the original k

4



factors. In the mushroom data set there are k = 21 non-trivial factors as predictor variables, and
the total number of dummies needed to carry this information is [(6 + 4 + 10 + 2 + 9 + 2 + 2 +
2 + 12 + 2 + 5 + 4 + 4 + 9 + 9 + 4 + 3 + 5 + 9 + 6 + 7)− 21] = 95. (Where did I get the numbers
(6 + 4 + · · ·+ 7)?)

(a) [5 total points for this sub-problem] Create a new directory for this case study and download
into this directory all of the files on the course web page that have ‘mushroom’ in their names.
I’ve written some R code for You, to start You on the analysis of this data set; it’s in the file
you just downloaded called

stat-206-mushroom-partial-data-analysis.txt

There’s a block of code at the top of the file that begins ‘the first block of code starts

here’ and ends ‘the first block of code ends here’; run this code block and study the
output. The function tab.sum in this code block provides diagnostic information on whether
a factor x will turn out to be predictively useful in the modeling; briefly explain in what sense
tab.sum provides such information (Hint: the function estimates the conditional mean (and
SD, not useful here) of what variable given what other variable?) [5 points].

(b) [10 total points for this sub-problem] Run the second code block, in which a linear regression
model is fit with the dichotomous outcome poisonous regressed on the factor cap.shape, and
study the output. When the predictions ŷ from equation (3) are specialized to this regression,
they looks like

ŷi = β̂0 + β̂1 zi1 + · · ·+ β̂5 zi5 , (4)

in which the β̂j are the maximum-likelihood estimates of the regression coefficients and where
{zi1 = 1 if cap.shape = ‘c’ and 0 otherwise}, {zi2 = 1 if cap.shape = ‘f’ and 0 otherwise},
and so on down to {zi5 = 1 if cap.shape = ‘x’ and 0 otherwise}. Now examine the extracts
from the tab.sum and regression fitting in Table 1. Explicitly identify (β̂0, . . . , β̂5) in the
output in the table [5 points], and – by thinking about the form of equation (4) for each of
the levels of cap.shape – explicitly relate the numbers in the mean column of the tab.sum

output in Table 1 to the β̂j [5 points].

(c) [20 total points for this sub-problem] Toward the end of the second code block, the code
computes predicted p̂ = P (y = 1 |x1 LB) values (in which L signifies the linear regression
modeling assumption, which is not part of B), makes a diagnostic plot and computes a numer-
ical diagnostic – the Predictive Separation Index (PSI) – measuring the predictive strength of
the factor cap.shape.

(i) [10 total points for this sub-problem] The diagnostic plot is in two parts: the top panel
is a histogram of the p̂ values for the mushrooms for which y = 0, and the bottom panel
shows the same thing except for the cases in which y = 1. What would the ideal shape
of these histograms be, if a factor x has extremely strong information for predicting a
dichotomous outcome y? Explain briefly [5 points]. Do the histograms achieve that goal
with the predictor cap.shape? Explain briefly [5 points].

(ii) [10 total points for this sub-problem] The PSI, which is a numerical index that goes hand-
in-hand with the diagnostic plot, is defined as follows:

PSI(x) = [mean (p̂ given x) when y = 1]− [mean (p̂ given x) when y = 0] . (5)

What’s the ideal value of the PSI, if a factor x is highly predictive of y? Explain briefly
[5 points]. Does the PSI come close to achieving that goal with cap.shape? Explain
briefly [5 points].

5



Table 1: Extracts from the output of the second code block.

# cap.shape n mean sd

# [1,] 1 452 0.1061947 0.308428

# [2,] 2 4 1 0

# [3,] 3 3152 0.4936548 0.5000391 output of tab.sum

# [4,] 4 828 0.7246377 0.4469667

# [5,] 5 32 0 0

# [6,] 6 3656 0.4671772 0.4989898

# Coefficients:

# Estimate Std. Error t value Pr(>|t|)

# (Intercept) 0.10619 0.02279 4.659 3.22e-06 ***

# cap.shapec 0.89381 0.24335 3.673 0.000241 *** output of

# cap.shapef 0.38746 0.02437 15.898 < 2e-16 *** linear

# cap.shapek 0.61844 0.02834 21.824 < 2e-16 *** regression

# cap.shapes -0.10619 0.08864 -1.198 0.230926

# cap.shapex 0.36098 0.02416 14.942 < 2e-16 ***

Table 2: Predictive accuracy of each of the factors x in the mushroom data set, with PSI sorted from
largest to smallest.

Factor (x) PSI Predictive Power
...

...
...

cap.shape 0.0603 weak
cap.surface 0.0388 weak

...
...

...

(d) [20 total points for this sub-problem] Run the third code block and study the output. I’ve
written a function called univariate.exploration that automates the process of repeating
the first and second code blocks; run this function with each of the other 20 categorical
predictors (save odor for last, for reasons that will become clear); in each case, pay particular
attention to the table created by tab.sum, the diagnostic plot and the PSI value. Summarize
Your findings by completing Table 2; I suggest that You use the phrases extremely strong,
strong, moderate, weak, and almost none to describe the predictive power of each x variable
[15 points]. If You were going to base the app on only one or two predictors, which ones look
like the best candidates? Explain briefly [5 points].

(e) [15 total points for this sub-problem] In the output from code block 3, the PSI for cap.surface
came out 0.03877928, which we could round to 0.03878. That number appears somewhere
else in the regression output; where? Read pages 748–749 in DeGroot and Schervish (2012),
available on the course web page; based on Your reading of these pages, briefly explain what
the number in the regression output is trying to measure [5 points]. Does it make sense that
the PSI and this number are closely related? (This relation only holds for regressions with a
dichotomous outcome; if y is continuous, the PSI doesn’t make sense.) [5 points] Check several
other sets of output from the univariate.exploration function with different predictors; is

6



the relation between the PSI and the number in the regression output always the same? [5
points]

Run the fourth code block, in which a linear regression model is fit with all available predictors
(let’s call this the full model F), and study the output. You can see that R has a convenient way
(poisonous ∼ .) to specify all of the predictors without having to name all of them. You can
further see that prediction of the poisonous status of all n = 8,124 mushrooms using the full model
is perfect: all of the truly poisonous mushrooms have estimated P (yi = 1 | LxiF B) = 1, and all
of the truly edible mushrooms have estimated P (yi = 1 |xi LF B) = 0 (here xi is the vector of
predictor variables for mushroom i).

However, this evaluation of the predictive quality of F may overstate its accuracy, because we
used the same (entire) data set both to fit F and then to see how good F is. As mentioned in
class, cross-validation (CV) is a good way to check on the extent of any over-fitting: You partition
the data set at random into non-overlapping subsets, fit the model on one subset, and evaluate
the quality of the fit on another. A well-established CV method is called s–fold cross-validation:
randomly partition the entire data set into s non-overlapping exhaustive subsets {S1, . . . , Ss}, and
loop as j (say) goes from 1 to s: set aside subset Sj, fit the model Mj on the union of all of the
other subsets, and evaluate the quality of the fit on Sj, by using Mj to predict all of the y values in
Sj; when the loop is finished, average the resulting s quality estimates to get an overall evaluation
of the model’s predictive accuracy that avoids over-fitting.

(f) [10 total points for this sub-problem] Run the fifth code block, which implements s–fold CV
with s = 10 (this choice has been shown to be reliable), and study the output, which is
summarized in a graph and a number: the graph plots the cross-validated predictions against
the true values of the outcome variable poisonous, and the number is the CV estimate of
what’s called the root-mean-squared error (RMSE) σ̂ of the regression predictions, namely

σ̂ =
√

1
n

∑n
i=1(yi − ŷi)2 (here ŷi is the predicted value of yi; what the code actually does is

(a) compute the s = 10 separate estimates σ̂j of the RMSE arising from the cross-validation

process and then (b) combine the σ̂j values optimally with σ̂ =
√

1
n

∑s
j=1 σ̂

2
j ). Does the graph

arising from the CV process support the idea that the predictions from the full model F
are perfect, even when cross-validated? Explain briefly [5 points]. Does the cross-validated
RMSE value also support this idea? Explain briefly [5 points].

Now that we’ve achieved the rare feat of perfect prediction, let’s think about the app we’re de-
signing: do we really want to make users supply multiple-choice answers to 21 different questions
about the mushroom they’re thinking of eating? The next (and nearly final) task in this problem
is to see if a subset of the full set of 21 predictors can do as well, or nearly as well, in predictive
accuracy as the full model F .

(g) [10 total points for this sub-problem] Run the sixth code block, which implements a method
called step-wise variable selection, using the Bayesian Information Criterion (BIC) we talked
about in class; recall that lower BIC values correspond to better models. The output of this
code block is sufficiently voluminous that I put it into another .txt file, also available on the
course web page:

stat-206-mushroom-analysis-variable-selection-with-bic.txt

Study the output from this code block. This implementation of the R function step starts
with the null model consisting of just an intercept term, and then sequentially chooses the

7



Table 3: Cross-tabulation of truth against what the app says for decision rules based on odor with two p̂
cutoffs, 0.05 (left) and 0.01 (right).

0.05 Cutoff 0.01 Cutoff
Truth

Poisonous Edible Total
App Poisonous
Says Edible

Total

Truth
Poisonous Edible Total

App Poisonous
Says Edible

Total

best variable not yet in the model and adds it. For the mushroom data, the algorithm goes
through 11 iterations of this method, until it discovers that the model with 10 sequentially-
best predictors yields perfect predictions, at which point it stops with an excellent and snarky
warning message. By thinking about what the output is saying about the best subset of x
variables, and in what order, answer the following three questions, as k goes from 1 to 3:

If the app were going to be based on only k variable(s), which {one is}/{ones are}
best?

Explain briefly [10 points].

(h) [25 total points for this sub-problem] Finally, suppose that we tentatively decide to base the
app only on the mushroom’s odor. We would then still have to specify a decision rule to
implement in the app, as a function of the p̂ value it produces for a new mushroom. It’s easy
to show (You’re not asked to show this) that the optimal decision rule is of the form

If p̂ ≥ c, declare the mushroom poisonous; otherwise declare it edible

for some 0 ≤ c ≤ 1. Run the seventh code block, which summarizes the quality of two odor–
based decision rules, one with c = 0.05 and the other with c = 0.01. Fill out Table 3 above
by carefully re-arranging the output of the final two table commands in the code block
[10 points]. Letting (as usual with classification rules) {App says poisonous} be a positive
(+) finding and {App says edible} be a negative (–) result, use Your filled-out Table 3 to
estimate the false-positive and false-negative rates for each of the 0.05– and 0.01–cutoff rules
(You may wish to refer back to the ELISA case study in class and/or Take-Home Test 1) [10
points]. Considering the real-world implications of a false-positive error, and repeating for
false-negative mistakes, is the 0.05–cutoff rule acceptable as a basis for our app? What about
the 0.01–cutoff rule? Explain briefly in both cases [5 points].

(i) Extra credit [up to 20 extra points]: Repeat part (h) (modifying code block 7 appropriately)
with the app based on the best two predictor variables (instead of just odor). Is there
now, with the two best predictors instead of one, an optimal cutoff that You regard as an
acceptable trade-off between false-positive and false-negative mistakes, if You were going to
sell the resulting app to wild-mushroom hunters? Explain briefly [up to 10 extra-credit points] ;
[up to 10 more extra-credit points] for repeating (h) with the best three predictors.

(B) [125 total points for this problem] Email has been around since 29 Oct 1969, when a researcher
named Ray Tomlinson sent the first email message over a network called ARPANET. It appears that
the first email spam message — Google dictionary defines spam as “irrelevant or inappropriate
messages sent on the Internet to a large number of recipients” — was sent on 1 May 1978 (it was
an advertisement for a presentation by the now-defunct Digital Equipment Corporation (DEC),
sent by a DEC marketer to several hundred ARPANET users). It was reliably estimated in 2019 that

8



about 53% of all email messages worldwide as of Oct 2018 were spam. What can You, as an email
user, do to minimize the amount of spam You receive in Your inbox?

One idea would be to construct a type of algorithm called a spam filter : a program that inputs an
email message and outputs a tentative classification of that message as spam or not-spam (which
is sometimes whimsically referred to as ham). This problem is about an attempt by researchers at
Hewlett-Packard Labs (HPL) in 1999 to construct a spam filter that was personalized to a single
individual named George Forman, the HPL postmaster at the time. George collected a represen-
tative sample of 1,813 messages that were certified as spam by him and by other HPL researchers,
and he also obtained a representative sample of 2,788 email messages from HPL employees that
were certified to be non-spam, yielding a data set with n = 4,601 messages.

Our data sets this quarter have all had the same structure: a matrix with one row for each subject
of study (e.g., people, strands of copper wire, ...) and one column for each variable measured on
the subjects. The HPL spam case study poses an interesting data-science problem: how do You
summarize Your information when the 4,601 subjects You’re studying are documents?

The HPL researchers did something reasonable (but probably far from optimal in terms of informa-
tion-extraction):

– they identified 48 words that they thought might be good discriminators (about half possible
spam and half perhaps ham) and computed the relative frequency of occurrence of each word
in each email message (on a 0–100 percentage-point scale);

– they kept track of the relative frequency with which each of 6 special characters — ; ( [ ! $
# — occurred in each message (again on a 0–100 percentage point scale); and

– they summarized information about the use of capital letters in 3 ways: the average length in
each email message of consecutive runs of capital letters, the longest run of consecutive capital
letters in the message, and the total number of consecutive capital letters in each message.

The file spam-data-context.txt on the course web page contains additional contextual informa-
tion; please make a directory that will hold all of the files in this case study, and download and
read the context file before continuing.

(a) [10 total points for this sub-problem] The following statement is made in the context file:
False positives (marking good mail as spam) are very undesirable. Do You agree with this
statement? Explain briefly. Do You agree with the following natural companion statement?
In this problem, false positives are worse than false negatives. Explain briefly.

(b) [10 total points for this sub-problem] If You wanted to go beyond what the HPL researchers
did in extracting spam-relevant information from their email messages, in what other ways
would You data-mine the texts in these messages to obtain additional spam-predictive signal?
Please suggest at least two additional methods, explaining briefly.

The HPL data set is on the course web page in the file SPAM.txt . I’ve written R code that helps You
analyzes these data, in two files that are also on the course page: spam-partial-data-analysis-R.
txt and spam-analysis-functions-R.txt , and there’s a third file — spam-data-analysis-

variable-summary.txt — that contains some of the output You’ll produce. Please download all
of these files into Your directory for this case study, before going on with the rest of the problem.

Our first task is to understand the scales on which the predictor and outcome variables currently
live, by making graphical and numerical summaries of them, both one by one and by examining
the bivariate relationships between each predictor and the outcome.

9



(c) [15 total points for this sub-problem] Run the first code block in the file spam-partial-data-

analysis-R.txt and examine the output. With reference to the results from the summary(

raw.data.modeling ) command, what’s the minimum value taken on by each of the 57
predictors? What’s the relationship between the median and the mean for each predictor?
What do these two aspects of the data set imply about the histogram shapes of the predictors?
Explain briefly.

(d) [10 total points for this sub-problem] To obtain the histograms mentioned in part (c), run the
second code block in three steps: run plotting code block 1 and examine the results; repeat
with plotting code block 2; and repeat with plotting code block 3, this time making a PDF
file of the resulting plot and including it in Your solutions. Did the histograms come out as
You expected them to? Explain briefly.

The usual descriptive tools for examining the way quantitative predictors x and quantitative out-
comes y relate to each other are scatterplots (graphical) and correlations (numerical). These
methods were created for Bivariate Normal situations, which we emphatically do not have here,
but they’re useful anyway as long as we don’t interpret their results inappropriately. For example,
correlations are attenuated (diminished in absolute value) when x or y is binary; what would ordi-
narily be a mediocre correlation of (say) +0.36 with Bivariate Normal data is actually quite strong
when y is dichotomous.

(e) [10 total points for this sub-problem] Run the third code block and examine the full output,
which is truncated in the .txt file containing the code. Bearing in mind that y is coded 1
for spam and 0 for non-spam, and that the emails were chosen so that the result is a personal
spam filter for George Forman, do the magnitudes and +/− signs of any of the following
correlations of y with predictors x surprise You? x = { ‘ch..4’, ‘hp’, ‘credit’, ‘george’, ‘ch..5’,
‘crl.long’ } Explain briefly.

I bring up the issue of distributional shape of the predictors because research has shown that
predictive signal is maximized (if the outcome is dichotomous) when the histogram of a quantitative
predictor x is close to Normal. If this is not true of x on the original scale on which the data
values were collected, You can often increase predictive power by transforming x to a new scale of
measurement, using one of two approaches:

(I) You can look for an invertible function f such that the distribution of f(x) is closer to
Normality, or

(II) You can create a set of indicator variables from x by partitioning it at its quantiles, and model
x as a factor instead of as a continuous predictor. If the sample size n is large, a reasonable
choice is to cut x into 10 groups at its deciles (the 0th, 10th, 20th, ... and 100th percentiles).

All of the models we’ll fit in this problem are instances of logistic regression, which has the general
form (for i = 1, . . . n)

(Yi | pi B)
I∼ Bernoulli(pi)

logit(pi) , log

(
pi

1− pi

)
=

k∑
j=1

βj xij = (X β)j ; (6)

here
I∼ means are independently distributed as, X is an (n× k) matrix whose first column is all 1s

to accommodate the intercept term and all of whose other columns are vectors xj containing the

10



values of the predictor variables, and β is a (k × 1) vector of (unknown) regression coefficients βj.
This model is a special case of the class of methods known as generalized linear models (GLMs);
here the link function that connects the pi to X is logit(pi).

R has a built-in function called glm that performs maximum-likelihood fitting of model (6) and
other GLMs; with y = (y1, . . . , yn) as the observed vector of binary outcomes and x.1 and x.2

as vectors containing the values of two of the predictor variables, the command glm( y ∼ x.1,

family = binomial( link = ‘logit’ ) ) fits the logistic regression model in which the only
predictor is x.1, and glm( y ∼ x.1 + x.2, family = binomial( link = ‘logit’ ) ) fits the
corresponding model in which x.1 and x.2 are both included as predictors.

As with all statistical models, we need a method for judging when one logistic regression model
is better than another. The glm function has a frequentist method called AIC built into it that
goes hand-in-hand with maximum-likelihood fitting of a GLM; AIC is similar to BIC (which we
discussed in class) in that they both trade off goodness-of-fit of a model against its complexity,
but AIC and BIC have different complexity penalties. For any parametric model M containing a
(k × 1) vector θ of unknown quantities (parameters) and no random effects, it turns out that the
complexity of M is meaningfully defined simply to be k, and goodness of fit can be measured by
calculating the maximum value the log-likelihood function ``(θ |yMB) defined by M takes on.
With this in mind, AIC is computed as follows:

AIC(M|y B) = −2 ``(θ̂MLE |yMB) + 2 k . (7)

Because we want the maximum log-likelihood value of a model to be big as an indication of its
goodness of fit, the multiplication of ``(θ̂MLE |yMB) by −2 means that models with small values
of AIC are preferred (where by the phrase “AIC1 is smaller than AIC2” I mean that AIC1 is to the
left of AIC2 on the number line, not that AIC1 is closer to 0 than AIC2).

(f) [10 total points for this sub-problem] Run the fourth code block, stopping and starting as
recommended; study the logic behind the commands and examine the output. This chunk
of code implements an instance of method (I) mentioned above, with a transformation of the
form x → log(x + C) on the predictor variable make plus an indicator variable for ( make

= 0 ). Two logistic regressions are run in this code block: spam predicted by make, and
spam predicted by log( make + C ) and make.is.0. Identify the AIC values for these two
models. Has this transformation succeeded in extracting additional predictive signal from
make? Explain briefly.

Code block 5 implements an instance of method (II) mentioned above (creating categorical indica-
tors from a continuous predictor x and using them instead of x itself), and also creates a diagnostic
plot that helps to see how a predictor might optimally enter the modeling. If a predictor x has a
non-linear relationship with logit(p), the simplest form of non-linearity is quadratic, so people often
create a new variable x.squared <- x * x and logistically regress y on both x and x.squared

to explore this possibility. The function I’ve written for You does six things with a predictor x:
(1) it creates the categorical variable x.cut from x by partitioning x at a user-specified number of
quantiles, and runs the function tab.sum (from problem 2(A)) to examine the resulting predictive
signal; (2) it regresses y on x and harvests the AIC value; (3) it repeats (2) with the predictors x

and x.squared and grabs the resulting AIC; (4) it repeats (2) with the predictor x.cut and takes
note of the AIC value that results; (5) it prints a summary table of the three AIC values to help
You see which modeling approach is best; and (6) it creates an interesting plot.

The red dots in the plot are the observed x and y values, so that You can see where most of the
data is concentrated as You scan from left to right; it computes the predicted p.hat values based

11



on x, transforms them to the logit scale, and plots a lowess smooth of the transformed p.hat

values against x, together with a user-specified number of bootstrap replicate lowess curves, to
give You an idea both of the the relationship between x and logit( p.hat ) and the uncertainty in
that relationship. (I’ve truncated the plot at p̂ = 0.999 and 0.001, to keep it from going so wide
vertically that the information in the plot for 0.001 < p̂ < 0.999 is harder to absorb.)

(g) [40 total points for this sub-problem] Run the fifth code block, stopping after each call to
the function logistic.regression.univariate.exploration to examine the output before
going on to the next call.

(i) Examine the tab.sum results for the predictor make with 10 requested categories. Is there
predictive signal in x.cut with this choice of x? Explain briefly [5 points].

(ii) Looking at the AIC summary table for make with n.cutpoints = 10, which of the three
approaches to bringing this x into the modeling is most successful? Explain briefly [5
points].

(iii) Does the diagnostic plot for the predictor make exhibit curvature in the relationship
between make and logit(p)? Is this confirmed in the logistic regression results when y is
modeled as a function of make and make.squared? (Hint: Look at the table of estimated
coefficients for the quadratic regression model.) Explain briefly [10 points].

(iv) Is there noticeably more predictive signal in make when n.cutpoints = 20 is specified
than with n.cutpoints = 10? If we try to go on with n.cutpoints = 30 or 40 or ...,
what do You expect will eventually happen? Explain briefly [10 points].

(v) In part (e) of this question You probably noticed that the word your had the strongest
univariate predictive signal. Is this fact reflected in the diagnostic plot for this predictor?
Explain briefly [5 points].

(vi) Is there more predictive signal in x.cut based on make with n.cutpoints = 10 (method
(II)) than the corresponding signal in {log( make + C ) + make.is.0} (method (I))?
Explain briefly [5 points].

(h) [10 total points for this sub-problem] Run the sixth code block; study the logic behind the
commands and examine the full output of the glm( ) function call, which is truncated in
the R code file but available in full in the file spam-data-analysis-glm-results.txt on the
course web page.

(i) As explained in the R code file, run the function

logistic.regression.effect.of.adding.a.new.variable

three times, with beta.x = 0, then −3, then +3. Would you say that the predicted
probabilities of (y = 1) (the p.hat values in the function call) change dramatically as
beta.x goes from −3 to +3? Explain briefly [5 points].

(ii) Find the five predictor variables with the largest absolute z values in the glm( ) output,
and compare that list (in order) with the five predictor variables in code block 3 having
the highest correlations with the outcome variable spam. Should it worry us that these
lists are not the same? Explain briefly [5 points].

(i) [10 total points for this sub-problem] Run the seventh code block, stopping and starting as
recommended; study the logic behind the commands and examine the output.

(i) What value of the predictive separation index (PSI) does the logistic regression model with
all 57 predictors achieve, when the model fit to the Modeling subset of data is evaluated
on the same subset? Where would you regard these predictions on the scale {terrible, not
great, okay, good, terrific}? Explain briefly [5 points].

12



(ii) How much did the PSI change when the model (fit to the Modeling subset) was required
to predict the email messages in the Validation data set? Does this mean that the logistic
regression model is guilty of a {large, moderate, small} amount of over-fitting? Explain
briefly [5 points].

(j) Run the eighth code block, stopping and starting as recommended; study the logic behind
the commands and examine the output. The point of this code block is to fit a Bayesian
logistic regression model, to the Modeling subset, that shrinks unstable maximum-likelihood
regression coefficients toward 0 to stabilize the prediction process.

(i) The predictors with the largest standardized regression coefficients in absolute value are
george and cs. Has the Bayesian model succeeded in stabilizing the ML estimation
process, at least to some extent, for those two predictors? What percentage of the k = 57
coefficients have been shrunken toward 0 in the Bayesian fitting process? Explain briefly
[10 points].

(ii) Are the Bayesian predictions dramatically more accurate than the ML results? Is the
Bayesian model guilty of more over-fitting than the ML model, or less, or about the
same? Explain briefly [10 points].

(iii) Examine the tables, at the end of code block 8, that include uncertainty bands for the
p.hat values from the Bayesian fitting. Would you say that, even with 3065 email mes-
sages in the Modeling subset, there is substantial uncertainty in the prediction process?
Explain briefly [5 points].

(k) Run the ninth code block; study the logic behind the commands and examine the output.
This chunk of code fits (via ML) a logistic regression model in which we include not only
all k = 57 predictors but also all two-way interactions between those variables; to create an
interaction predictor between (say) x1 and x2, we just form the product (x1 · x2); this brings
in non-linear predictive information, which can greatly improve the predictive process.

(i) Compare the typical magnitudes of the logistic regression coefficients in the all-two-way-
interactions model with the corresponding values in the earlier regression with only the
57 main effects (as they’re called); do you agree with the statement, “It looks like ML
logistic regression has gone crazy”? Explain briefly [5 points].

(ii) And yet, how do the predictions from the model with all two-way interactions compare in
quality (e.g., PSI) with those from the earlier model that included only the main effects?
Explain briefly [5 points].

There’s lots more to do with this data set (e.g., using a Bayesian/penalized-ML method called the
lasso to fit the all-interactions model), but let’s stop here for now.

13


