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STAT 206: Quiz 3 [55 points]

Name:

(Inference for the variance in the Gaussian sampling model with known mean) People in Las
Vegas who are experts on the National Football League provide a point spread for every football
game before it occurs, as a measure of the difference in ability between the two teams (and
taking account of where the game will be played). For example, if Denver is a 3.5–point
favorite to defeat San Francisco, the implication is that betting on whether Denver’s final score
minus 3.5 points exceeds or falls short of San Francisco’s final score is an even-money (50/50)
proposition. The top panel of Figure 1 below (based on data from Gelman et al. (2014)) presents
a histogram of the differences d = (actual outcome – point spread) for a representative sample
of n = 672 professional football games in the early 1980s, with a Normal density superimposed
having the same mean d̄ = 0.07 and standard deviation (SD) s = 13.86 as the sample (if this
distribution didn’t have a mean that’s close to 0, the experts would be uncalibrated and you
could make money by betting against them). You can see from this figure that the sampling

model (Di |σ G B)
IID∼ N(0, σ2) is reasonable for the observed differences di (i = 1, . . . , n),

in which G stands for the Gaussian sampling distribution assumption (which we’re making
after looking at the data (the cheating approach to sampling distribution specification) and is
therefore not part of B). Hint: You will find it much easier in this problem to work
with the Gaussian variance parameter σ2 if You define θ = σ2 and focus all of Your
calculations on θ.

(1) Write down the likelihood and log likelihood functions for θ in this model [10 points].
Show that θ̂ = θ̂MLE = 1

n

∑n
i=1 d

2
i , which takes the value 191.8 with the data in Figure

1, is both sufficient and the maximum likelihood estimator (MLE) for θ [10 points]. Plot
the log likelihood function for θ in the range from 160 to 240 with these data, briefly
explaining why it should be slightly skewed to the right. [5 points]



Figure 1: Top panel: Differences di between observed and predicted American football scores,
1981–1984, with the Normal distribution with the same mean and SD superimposed (solid red
curve); bottom panel: prior, likelihood and posterior for θ with the data in the top panel and
the improper prior.
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(2) The conjugate prior for θ in this model turns out to be (You don’t have to show this) the
Scaled-Inverse-χ2 distribution,

θ ∼ χ−2(ν0, σ
2
0), i.e., p(θ) = c θ−( ν0

2
+1) exp

(
−ν0 σ

2
0

2 θ

)
, (1)

in which ν0 is the prior sample size and σ2
0 is a prior estimate of θ (this is actually

a re-parameterization of a special case of the Inverse Gamma family of densities). In
an attempt to create a low-information-content prior, people sometimes work with a
version of equation (1) obtained by letting ν0 → 0, namely p(θ) = c0 θ

−1. The resulting
prior is improper (in the usual sense: that it integrates to +∞), but it turns out that
posterior inferences will be sensible nonetheless (even with sample sizes as small as n = 1).
Show that with the general χ−2(ν0, σ

2
0) prior in equation (1), the posterior for θ with

the Gaussian likelihood is χ−2
(
ν0 + n,

ν0 σ2
0+n θ̂

ν0+n

)
, and conclude therefore that with the

improper prior the posterior distribution is χ−2(n, θ̂) [5 points].



(3) The bottom panel of Figure 1 plots the prior, likelihood, and posterior densities on the
same graph using the data in the top panel of Figure 1 and taking c0 = 2.5 for convenience
in the plot. Get R (or some equivalent environment) to reproduce this figure (You’ll need
to identify which member of the χ−2 family the likelihood density is); include Your code
as part of Your answer [5 points]. Explicitly identify the three curves, and briefly discuss
what this plot implies about the updating of information from prior to posterior in this
case study [10 points].

Programming notes: If You’re working with R, You can use the scaled.inverse.

chisq.density function I wrote for you, which is posted on the course web page. If

You’re writing code in a language other than R, note that — because the data values in

this example lead to astoundingly large and small numbers on the original scale, which

then need to be multiplied — it’s necessary to do all possible computations on the log

scale and wait to transform back to the original scale until the last possible moment

(look at my R function to see what I mean). You’ll need to be careful to use the correct

normalizing constant c in equation (1), which can be found in Appendix A of the

Gelman et al. (2014) book, and You’ll need a function that computes log Γ(x) (such

a function should be built into Your programming environment; don’t compute Γ(x)

and take its logarithm [You’ll get an overflow error with the data in this problem]).

(4) It can be shown (You don’t need to show this) that (as long as ν > 4)

(θ | B) ∼ χ−2(ν, σ2) → E(θ) =

(
ν

ν − 2

)
σ2 and V (θ) =

[
2 ν2

(ν − 2)2 (ν − 4)

]
σ4 . (2)

Use this to compute the posterior mean and SD for θ with this data set (using the improper
prior), and compare the posterior mean with the MLE, briefly explaining why they’re so
similar in this case [10 points].


